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I.  Introduction 

 Today, electromagnetic simulations have become very useful in creating and 

analyzing microwave structures.  Now, if one wants to test a certain hypothesis about a 

structure, he or she can first use a simulation to see if the hypothesis is at all possible.  

Also, simulations can be compared to raw measurements for accuracy and understanding 

of a problem.  I used two programs to run my electromagnetic simulations: Ansoft High 

Frequency Structure Simulator (HFSS) and Ansoft Optimetrics. 

 Ansoft HFSS is a software package used to simulate the electromagnetic behavior 

of a three-dimensional structure.  One can easily compute such things as: electromagnetic 

field quantities, radiated fields, characteristic port impedances, S-parameters, 

eigenmodes, and many other useful quantities.  However, for HFSS to compute these 

quantities and fields, many conditions must be specified.  First, one must draw the 

structure and specify the characteristic materials for each object.  Next, the sources, ports, 

and special surface boundary conditions must be identified.  Once all this has been 

specified, HFSS will compute a solution to Maxwell’s equations with all the necessary 

fields. 

 Ansoft Optimetrics is very similar to HFSS, however, it has a “batching” program 

that is very useful.  Optimetrics takes an HFSS-defined model and can perform 

optimization and parametric analyses of the model.  What is even better is that it allows 
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the user to simulate design variations using a single, or “nominal”, model!  You no longer 

need to create a new model to calculate for each new variation.  Ansoft Optimetrics will 

do that all in one project.  Also, one can define a cost function, which the optimizer 

function of Optimetrics will attempt to find a minimum value.  This function is very 

useful, and example of this is illustrated in Chapter 2. 

 These two simulators have become very useful tools in designing and analyzing 

microwave and electromagnetic structures.  Below I will illustrate five projects that were 

completed using one or both of these programs.  Also, I have included a technical notes 

section in Appendix C, which give some helpful facts about the programs. 
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II.  Ansoft HFSS and Optimetrics Projects 

1.  Radiation from Open-Ended Coaxial Probes 

In order to understand the power radiated from an open-ended coaxial probe with center 

conductor extended as an STM tip such as Atif Imtiaz’s microscope, I created simplified 

versions of the typical MWM/STM experiment, which included only a coaxial cable 

without a tip in an empty radiation box.  No sample was present.  An analytical solution 

is known for the case of an open coaxial probe with an infinite ground plane extension, 

radiating into free space [1]. 

 

Figure 1.  Typical setup for the open-ended coaxial probe and radiation box.  The dimensions 
included are that of the largest radiation box I used. 

 

I varied the size of the radiation box, which produced variations in the radiated power.  

The pattern these variations produced is shown in Figures 2 and 3. 
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Figure 2.  Variation in Power Radiated due to changes in box size for the blunt coaxial probe solved 
at a frequency of 7.67 GHz and an input power of 1 Watt.  The radiation box is about the size of ¼ 

the wavelength for a box with a length of about 9mm. 

 

It was found that the radiated power is linear in the inverse surface area of the radiation 

box, and nonlinear when plotted versus the inverse volume or inverse length of a side of 

the radiation box, (last two plots not shown). 
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Figure 3.  Log-log plot of variation in Power Radiated for blunt coax versus the inverse surface area 
(SA) of the radiation box.  The red arrow points out where the box is about as big as ¼ the 

wavelength.  The power radiated data is the same as that used in Figure 2. 
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From these graphs, it can be deduced that as the radiation box gets larger, the power 

radiated gets smaller. 

The HFSS manual claims that the radiation box should be bigger than a fourth of 

the wavelength, meaning the sides of the box should be a fourth of a wavelength or 

farther from the objects inside.  This is consistent with my data.  Furthermore, the 

analytical value for the power radiated for a blunt coax with an infinite ground plane, 

similar to the one I created for these experiments can be found using the following 

equation, [1]: 
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=freeZ  is the impedance of free space, which is about 377 Ohms.  V  is the 

voltage between the inner and outer conductors, found to be 20 Volts from HFSS data.   

The inner and outer radii are given as  = 0.255 mm and b  = 0.84 mm, respectively. The 

parameter  is the frequency given as 7.67 GHz and c  is the speed of light in a vacuum.  

After plugging in the necessary values for these parameters, I found a power radiated of 

about 5.35E-05 Watts.  The intercept from Figure 2 gives a power radiated of 1.73E-05 

Watts in the limit of infinite radiation box size.  These two values are fairly close, but not 

quite the same.  Perhaps our linear extrapolation to infinite box size is not valid.  Yet, 

besides the difference in these values, it is clear that the bigger the radiation box (greater 

than or equal to one fourth of the wavelength), the lower the value for the radiated power.   

a

f
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Radiation Loss Results 

 I created two new models, which were derived from the simplified versions 

above.  These two models contain an almost identical representation of Atif’s coaxial 

cable and STM tip.  The difference between the two models is that one has a perfectly 

conducting sample 22 nanometers from the tip while the other model contains no sample.  

I chose this 22 nm gap because of Aspect Ratio issues (discussed in Appendix Technical 

Notes).  Also, I made the radiation box very large, (about 3 times a quarter of the 

wavelength), in accordance with the results above.  A picture of the model, which 

contains the perfectly conducting sample is shown in Figure 4. 

 

Driving 
Port 

0.0854" OD 

Figure 4.  Picture of model with perfect conducting sample.  The radiation box, although not 
completely shown in this picture is 21x21x2.500022 mm. 

  

For the model containing the perfectly conducting sample, I calculated the 

radiated power at the radiation boundary so as to determine the radiation Q, , for the 

microscope using the following equation: 

radQ

rad
rad P

fUQ π2
= ,             (2) 
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where  is the power radiated,  is the frequency given as 7.67 GHz, and U  is the 

energy stored in the entire resonator (not modeled in HFSS), which is estimated to be 

2.1E-9 Joules, [2]. 

radP f

  If  is much larger than the measured unloaded Q  of the resonator then the 

power radiated is negligible and can be ignored in further studies with the STM-tipped 

microscope.  If  is small, then the power radiated will be a factor.  Results for the 

model containing no sample gave a power radiated of 3.309E-3 Watts.  Using this along 

with the other parameters gave a value for  of 30,584, which is very large compared 

to , which is about 400.  The calculated results of the model containing the 

perfectly conducting sample gave  as 1.262E-2 Watts.  Plugging this into the 

equation above gave a  of 8019, which again is very large compared to .  

From these two models and calculations I determined that  was large enough to 

safely assume that the power radiated is negligible for Q  measurements in STM tipped 

microwave microscope studies. 

radQ

radQ

radQ

unloadedQ

radP

radQ unloadedQ

radQ

Conclusions 

 When I develop new models in the future, to gain accurate results on the power 

radiated, I must create radiation boxes that are very large and comparable in size to a 

fourth of the size of the wavelength of a microwave signal.  However, as was determined 

above, it is safe to assume that any power radiated is negligible compared to other losses. 

Model Power Radiated Q radiated

Blunt coax/ no sample 1.73E-5 Watts 5.8 x 106

Stm-tip/ no sample 3.3E-3 Watts 30584 

Stm-tip/ with sample 1.26E-2 Watts 8019 
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 Indeed, the power radiated can be ignored in further studies with the microwave 

microscopes, until the  of the microscope increases into the 10unloadedQ 3 range. 
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3.  Loop Probe Model 

Theory 

   At high current densities a superconductor becomes nonlinear, and the 

penetration depth is dependent upon the current density [1]. The dependence of the 

penetration depth, λ, on the current density is given by [2]: 
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In this equation,  is defined as the scaling current density. The scaling current 

density, physically related to pair breaking in superconductors, sets the scale for how 

large a current is required to observe non-linearity in the penetration depth.  Larger  

values correspond to weaker non-linearity. 

NLJ

NLJ

Sheng-Chiang Lee’s nonlinearity microscope uses a closed loop to first stimulate 

a superconducting film with microwave currents at frequency .  Due to the nonlinear 

penetration depth mentioned above, the sample generates harmonic response at frequency 

, among others [3].  The loop probe detects the third harmonic as [4]: 

f

f3

3
2

2
0

2
3 2 ff P

Z
L

P ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ω
 ,         (2) 

where the inductance of the loop, , is given as [4]: 2L
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where t is the superconducting film thickness, ∫= JdsI 0 is the total current, 

and
∫

∫
=Γ

l

dxK

dxdyK

y

S

4

 is the geometrical factor serving as the figure of merit for Lee’s 

microscope probe. 

Now we can easily determine  from the measured values of  and the calculated 

quantities of the figure of merit Γ using the following equation [4]: 
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The main purpose of my loop probe models was to find Γ for different loop probe 

sizes.  The figure of merit could then be used to estimate the sensitivity of the microwave 

microscope to non-linearity in the penetration depth, λ.  For Lee’s microwave 

microscope, Γ is proportional to  (max).  This means that a large Γ correspond to 

better sensitivity to the weaker non-linearity for a given penetration depth, film thickness, 

and measured 3

2
NLJ

rd harmonic power, which is exactly what Lee wants.   

In the above equation, one can see that there is time-reversal symmetry in the  

term, because it is squared.  John has guessed that there might be an additional term 

within the equation for λ, which addresses broken time-reversal symmetry.  This new 

equation would look like the following:  
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The time-reversal symmetry is broken within the 
NLJ
J
′

 term.  I will also solve for another 

quantity, Γ , which is a figure of merit proportional to ′ NLJ ′  (max).  The calculation 

for  using Γ  and the second harmonic, , is analogous to the calculation of  

using Γ and  above.  

NLJ ′ ′ fP2 NLJ

fP3

 Now, the final question is, how does one find Γ and Γ′ ?  The answer lies within 

the surface current on the superconductor K, as can be seen in the above equations.  Once 

I have solved the loop probe models, HFSS will store all fields.  By employing Ansoft 

HFSS’s Calculator function, I could easily calculate the two figures of merit by using the 

following equations [4]: 
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where K is the surface current density on the perfectly conducting plane and  is the y-

component of the surface current density.  One can see that the numerators are surface 

integrals, while the denominators are line integrals.  The line integrals represent the total 

current on the superconductor.  These integral equations help make a connection between 

different geometries and  or 

yK

NLJ NLJ ′ . 

Setup and Analysis 

The loop probe model consists of a coaxial cable, in which the inner conductor curves 

around to touch the outer conductor, (as shown in the Figure 12).  The bottom of the loop 

is 12.5 microns above a perfectly conducting infinite plane.  I will also be referring to two 

radii: the inner conductor radius, R, and the loop radius, r.  Each consecutive model 
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consisted of smaller r and R, and also contained smaller coaxial cables, (given in table 

below). 

Loop Model 
Name 

Loop Radius 
r (μm) 

Wire Radius 
R (μm) 

Coaxial Cable 
Diameter (μm) 

085 665 250 2160 
037 270 100 880 
020 172.5 65 560 
010 86.25 32.5 280 
005 43.125 16.25 140 

 

 

Figure 5.  This is the setup for Loop Probe models.  The green line represents the perfect conducting 
plane.  Radiation Box Surrounds entire model. 

All of the models were solved at a frequency of 6.5 GHz, and contained a tetrahedron 

count of over 100,000 (for mesh resolution quality).  Also, to speed up the solution time I 

used symmetry in the model to cut it in half, (see Appendix C).  The cut-plane I defined 

as H-symmetry. (See Figure 18 for picture showing H-symmetry boundary.)   

After solving a loop probe model, I took a look at plots of the surface current on 

the perfect conducting plane.  I noticed a peculiar circular motion in the plots.  This 

circulating motion is shown in the figure below. 
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Figure 6.  This is a plot of the surface current on the perfect conducting plane.  There is a very 
noticeable circular motion in the current.  The entire perfectly conducting surface is used for the K4 
integral. 

Because the current circulates, the line for which my line integrals would be solved had 

to be adjusted.  One can see that there is a “hole” around which the current circles.  The 

line that I will integrate over should only extend as far as that hole to get a proper value 

for the integrals.  The hole’s position changed with the sizes of the loop probes, (see 

Figure 14).  Therefore, I had to adjust the integration line for each new model. 

 

Figure 7.  This is a plot of the "hole" distance versus the loop radius, r, both in mm. 
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Once I had my integration line set, I used the Calculator to solve for Γ and Γ′ .  I 

then plotted Γ against the loop radius, r, which is shown below. 

 

Figure 8.  The Figure of Merit gets very large as the loop size gets very small. 

Figure 15 shows that as the loop size gets very small Γ becomes very large.  The plot, 

however, for  is not quite as clear.  As shown in Figure 16, the values for  follow a 

similar pattern.  Yet, there is a small hump in the middle of the graph.  It is unclear why 

that is there. 

Γ′ Γ′

 

Figure 9.  There is a peculiar hump in the middle of the graph. 
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 I further studied Γ and Γ′  for a very small loop probe.  Actually, the loop was so 

small that the only feasible way to make it was to put it on what I like to call, the “home 

plate”.  Below is a picture of the loop probe. 

 

Figure 10.  The is a picture of the very small loop, 10 micron radius on sapphire plate. 

The loop, which extends from the coaxial cable is now a one micron thick film 

which ends in a loop of radius 10 microns and extends back up to the outer conductor.  

The film was placed on a 0.5 mm thick sapphire plate, as shown in Figure 17. 

The resultant figures of merit agree very well with the plots above.  For this 

model, Γ = 1.28E+006 A3/m2 and Γ′= 410.212 A2/m.  These values are huge compared 

to the other loop probes.  This shows that very small loop probes will have the highest 

sensitivity to the weak nonlinearity.   

I moved on to a new type of model, in which I placed a loop probe above a film of 

finite, non-zero sheet-resistance atop a substrate.  Lee and I wanted to see how a normal 

metal thin film, instead of a perfect conductor, would change the values of Γ and .  

The new model, which is shown in the figure, 

Γ′
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Figure 11.  New model to see how the figures of merit change due to sheet-resistant film.  This figure 
shows the H-symmetry plane used to cut all models in half to speed up solution process. 

consisted of a 037 Coaxial Cable loop probe with r equal to 270 μm and R equal to 100 

μm.  The bottom of the loop was 12.5 μm above a film of sheet-resistance 75 Ω/�.  This 

film rests on top of a one-millimeter thick LaO substrate, (ε = 24), whose bottom surface 

is defined as copper. 

 Again, using the surface current on the sheet-resistant film, I found Γ and Γ . ′

Figure of Merit Perfect Conductor Sheet Resistance Film  

75 Ω/ٱ 

Γ 31220 106.379 

Γ′  3.84 0.3 

 

 They were noticeably smaller, (by a few orders of magnitude!!), than those values found 

on the perfect conducting plane.  This in some sense means that Lee’s microscope is 

much less sensitive to nonlinearity in a normal metal film compared to a superconducting 

film. 

Mutual Inductance 

 16



Another aspect of the loop probe that I analyzed was the mutual inductance 

between two “mirrored” loops.  Below is the model for this calculation. 

 

Figure 12.  Setup for mutual inductance calculations. 

The two probes are exactly identical in dimensions and materials.  The ends of the loops 

are 25 μm from each other.  The signal is sent into the top probe via port 1 and is picked 

up by the bottom probe at port 2. 

 The purpose of this calculation is to find the mutual inductance of Lee’s 

microscope to determine how much signal is coupled from the sample.  The mutual 

inductance is given by: 

1

2

V
VLM = ,         (6) 

where V1 and V2 are the voltage drops between the inner and outer conductors of the 

coaxial cables of the top and bottom probes, respectively, (as shown in Figure 19).   The 

inductance of the bottom loop is given by 
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the induced current through the bottom loop.  The surface and loop used for solving the 

above integrals are shown in Figure 19. 

 All of the above equations can be easily solved by HFSS, using the Calculator.  

However, I ran into somewhat of a problem.  The voltages and induced current values 

that I calculated depended on what lines and loop, respectively, that I used.  Therefore, I 

found a range of values for the mutual inductance.  The range of values for the mutual 

inductance of three different loop sizes is shown in the table below. 

Loop Probe Mutual Inductance (H) M/L 

085 1.3E-011 to 2.7E-011 0.028 to 0.037 

037 1.7E-011 to 2.0E-011 0.03125 to 0.0367 

020 2.6E-012 to 2.1E-011 0.026 to 0.038 

 

Essentially, my results show that only about 3% of the signal sent is being coupled from 

the sample.  This means that this reflected signal must be amplified.  This is discussed 

more in the next chapter. 

Power Radiated

The last calculation was the Radiated Power for all of the models.  HFSS can 

automatically compute this quantity, and I have shown the results in the table below. 
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Loop Probe Name Radiated Power (W)

085 1.89E-002  

037 6.46E-004 

020 3.55E-004 

010 4.45E-005 

005 4.45E-005 

Small Probe 1.58E-001  

037 Thin Film 5.46E-004 

 

Pretty much all of the probes have negligible radiated power.  However, the small probe 

and the 085 probe appear to have fairly large values for the radiated power.  I believe, 

though that these numbers are not very trustworthy, because the radiation boxes are not 

more than a quarter wavelength away from the model.  This is probably the cause for 

such high numbers. 

Conclusions 

 My results essentially show that for Lee’s microwave microscope the smaller the 

loop probe the more sensitive it will be to non-linearity in the penetration depth.  Both 

graphs for Γ and Γ  show this fact.  This has an added benefit, because it improves the 

spatial resolution of his nonlinearity microscope.  However, if one takes away the perfect 

conductor and replaces it with a sheet-resistant film atop a substrate, the values become 

two orders of magnitude smaller.  Yet, perhaps this could be improved by adding a high 

impedance ground plane, such as the Sievenpiper ground plane discussed above. 

′
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4.  Re-entrant Cavity 

Theory 

 Sheng-Chiang Lee wishes to use a STM-tipped microwave microscope, because 

the spatial resolution for such a probe is very good. However, STM tips have sensitivity 

issues.  He needs large signals from the STM probe to be able to take good harmonic 

power data.  This means that he must increase the incident power at which he is working 

to large values.  This, however, causes a major problem.  At very high power, interactions 

between the STM tip and the sample will rectify the microwave signal and cause the tip 

to withdraw from the sample.  This is a highly unwanted reaction.  For proper data 

collecting, the tip must stay at the same height during the entire experiment.  So what can 

be done to his microscope to stop this problem?  We must employ and recover smaller 

signals.  This can be done using a “re-entrant” cavity. 

 As the incident signal is sent through the tip to the sample, a harmonic signal is 

then sent out from the sample.  The re-entrant cavity is designed to resonate with the 

harmonic signal, thus amplifying it.  The amplified signal can then be picked up by a loop 

probe, which is connected at a point elsewhere in the cavity in a region of large magnetic 

field.  Details about the cavity are discussed below. 

Setup and Analysis 

 As with any new model with HFSS, one should always start simple.  I followed 

this rule by creating a stand-alone cavity that I would solve using the eigenmode solver.  

The simple re-entrant cavity is shown in the figure below. 
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Figure 13.  Dimensional setup for the simple model of the re-entrant cavity.  The walls of the cavity 
consist of copper.  The cavity is cylindrically symmetric about the dash-dot line. 

The total size of the cavity is only about 5.2 cm in diameter, and the walls of the cavity 

consist of copper.  From the solutions, I found three resonant frequencies of particular 

interest: 2.8 GHz, 13.93 GHz, and 18.86 GHz.  At these frequencies the electric field is 

vertical and concentrated in the top middle part of the cavity.  This is illustrated in the 

figure below. 

 

Figure 14.  Example Electric Field plot for the 18.86 GHz frequency resonance of the empty cavity.  
The E-field is strongest at the middle-top area. 

This concentration of the electric field is of particular interest, because that area is where 

the sample will be placed and stimulated with an electric field probe in the more complex 

version of the re-entrant cavity. 
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 Happy with the solutions and data that I collected, it was now time to work with 

the complex model of the re-entrant cavity.  This new model consists of a driving 085 

coaxial cable with an STM tip center conductor protruding through the center of the 

cavity, extending to one micron above a 10 x 10 x 0.5 mm thick LaO substrate, εr = 24, 

on the opposite wall.  In the sidewall was inserted a 085 coaxial loop probe.  This model 

is shown in the following figure. 

 

Figure 15.  Setup for the complex re-entrant cavity.  The walls of the cavity are made of copper. 

I performed many frequency sweeps of different frequency ranges to look for resonant 

modes of the re-entrant cavity. 

 

Figure 16.  This is an example frequency sweep of the linear magnitude of the transmission 
coefficient between 2 GHz and 20 GHz.  All peaks represent resonant modes in the cavity. 
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One particular sweep produced a resonant frequency, which was exactly what I wanted. 

 

Figure 17.  This is a plot of Mag S12 versus Frequency of a frequency sweep of 18.7-18.9 GHz.  There 
is a noticeable peak around 18.7794 GHz. 

In the above graph, I found that there was a resonant frequency of about 18.7794 GHz.  I 

took a look at the fields, which are shown in the following figure. 

 

Figure 18.  These are the Field plots for 18.7794 GHz.  Both show that the E and H fields are very 
strong at the sample. 
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Both the electric and magnetic fields are concentrated right around the sample.  This was 

fantastic!!  At this frequency, the re-entrant cavity was amplifying and manipulating the 

fields exactly how we wanted it to. 

 I decided that I would try a single frequency adaptive solution at 18.78 GHz.  I 

felt that this frequency was very close to the resonant frequency 18.7794 GHz found by 

the frequency sweep.  After looking at the field plots, (shown below), however, it is 

somewhat hard to tell if 18.78 GHz is a resonant frequency.   

 

Figure 19.  This figure shows field plots at 18.78 GHz.  The fields are still concentrated at the sample, 
however, it is hard to tell if they are any stronger than those in the previous figure. 

Yes, the fields are still concentrated at the sample, but are they really as strong as they 

would be at 18.7794 GHz? 

Conclusions 

 It appears that employing a re-entrant cavity for John’s microwave microscope 

will indeed improve and amplify the microscope’s signal.  The cavity that I analyzed has 

a particularly good field structure around 18.7794 GHz.  We are confident enough in this 

analysis that Lee has built this re-entrant cavity to be placed in his microwave 

microscope!  
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V.  Appendix C:  Technical Notes 

 HFSS is a very complex and sometimes confusing program.  However, there are 

many useful techniques and facts about the program that one could use to improve his or 

her experience with HFSS.  I have included this list of technical notes to document 

important aspects and short cuts in the program that I believe will be very beneficial to 

anyone who works with Ansoft HFSS. 

Technical Notes 

A.  Wave Port Power 

 Each mode incident on a port contains one Watt of time-averaged power. 

B.  Fast Frequency Sweep 

 The fast frequency sweep is a useful function when one wishes to search for 

specific frequencies at which special phenomena occur inside a model.  For example, one 

would use a fast frequency sweep to find resonant modes of a resonating cavity.  

However, Beware!  Because the sweep uses an extrapolation function to find all of the 

modes using the central frequency, errors in these modes can become especially large for 

large sweeps.  For the most accurate solutions, try to keep the sweep limited to a range 

that does not span any further than about 25 percent from the central frequency.  And, 

should one need a large span of frequencies, just run several small ranged sweeps.  The 

electromagnetic fields will be greatly improved. 

C.  Aspect Ratio 

 As a general rule, Ansoft says that one should not create geometries in which 

large dimensions and small dimensions differ by more than four orders of magnitude.  

Usually this will result in an initial mesh failure, and HFSS will not solve the project.  
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However, there is a way to “cheat” this rule.  One must add virtual objects to the model.  

A virtual object is just a dummy object that will not be used in the final solution.  Yet, it 

will place additional mesh around areas that otherwise would have problems due to 

Aspect Ratio issues.  To compensate for the aspect ratio problem, put a virtual object in 

between the two objects.  The solution will be much more accurate, since more mesh 

tetrahedra will be present in that area. 

D.  Creating Large Mesh 

HFSS employs a technique called the finite element method to calculate vector 

field quantities within a model.  This method involves taking the model and dividing it 

into a large number of tetrahedra, which look like four-sided pyramids.  Field quantities 

are calculated at the vertices and edges of each element, while quantities inside the 

element are interpolated. 

 Components of a field tangential to the edges of an element are stored at the 

vertices of the tetrahedron.  Components of the field tangential to the face of an element 

and normal to the edge are stored at the midpoint of the edge.  Values of a vector quantity 

at points inside each tetrahedron are interpolated from these nodal values.  

 There are two interpolation schemes that HFSS may use.  The first scheme uses a 

first-order tangential basis function, which contains twenty unknowns.  This function 

interpolates from both nodal values at the vertices and on the edges.   The other 

interpolates using a zeroth-order basis function.  This function only has six unknowns and 

interpolates only from nodal values at the vertices.  This function assumes that the field 

varies linearly within the tetrahedra.  Because this interpolation function only has six 
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unknowns, less memory is needed to compute the solution.  Therefore, more element 

mesh can be added during the adaptive process. 

 HFSS automatically uses the first-order tangential basis function when running 

calculations.  However, it can be very useful to switch to the zeroth-order function so as 

to build a very large mesh for a more accurate solution.  This is easily done by typing ‘set 

ZERO_ORDER=1’ in the DOS prompt.  This command tells HFSS to switch the 

interpolation functions so that it only solves six unknowns instead of twenty.  This not 

only helps in the creation of larger mesh, but also reduces computer memory usage in the 

calculation. 

 There can be one drawback however to using this method.  The solution may be 

less accurate although there is more mesh.  There is a big difference between solving 20 

unknowns and six.  It may be useful sometimes to only have a medium size mesh with 20 

unknowns instead of a large mesh of 6 unknowns. 

E.  Improving the Mesh 

 There are times when one might wish to look at the electromagnetic fields inside a 

specific object or on a specified object face.  If this is the case, usually one would want to 

concentrate many mesh points in that area or volume to get the most accurate field data 

possible.  This can be done by manually “seeding” and refining the mesh. 

 In the Setup Solution window one is given two options.  One can seed the mesh, 

or one can refine the mesh.  To seed the mesh on an object or one of its faces means to 

add additional mesh tetrahedron that will be added in the specified area after each 

adaptive pass.  Refining the mesh means adding additional tetrahedra to a specified area 

so as to create a larger mesh in that area before the calculation is run. 
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 Both options are very useful in improving and increasing the size of the mesh in a 

certain object or on one of its faces.  I have found that my fields are more accurate in my 

specified areas when I use these functions. 

F.  Speeding Up the Solution 

 Many times a calculation can take quite a while to run, sometimes more than a 

day!!  Yet, there are some operations one can perform to speed up the calculation.  One 

such operation is “splitting” the model.  What I mean by this is that anywhere there is a 

symmetry plane in the model, cut the model in half along that plane.  This will reduce the 

size of the model and, in turn, reduce the size of the mesh needed to make an accurate 

solution.  The less mesh needed, the quicker the project will calculate a solution. 

 If a model has been split, to make HFSS assume there is a mirror image of the still 

existent model one must define a symmetry boundary condition on the splitting-plane.  In 

all of the cases in the above chapters, I defined the splitting-plane as H-symmetry since 

the H-field is perpendicular to the symmetry plane.  If the E-field was perpendicular to 

the symmetry plane then one would define the plane as E-symmetry. 
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VI.  HFSS Failures 

 There are some things that HFSS just cannot do.  I found that for some projects, 

HFSS would not produce very good solutions.  The program is not perfect, and does have 

some flaws, especially for small-scale structures.  Essentially, one should not trust the 

data that comes out of HFSS until full confidence has been gained!! 

 One example problem that I believe was a failure was when I was simulating the 

STM-tip structure on micron length scales.  Below is a picture with some dimensions of 

this model.  There is a 10 nm gap between the STM tip and the perfectly conducting 

sample.  Note that the aspect ratio of this model is A = 40.01E-6 m/10E-9 m = 4000, 

which is a bit large. 

 

Figure 20.  This figure shows my RLC boundary model. 
As one can see, the model is very small.  However, this should not be a problem as long 

as the aspect ratio is okay.  Yet, as shown above, the aspect ratio is fairly large.  This 

could cause some problems in the calculation.  The main problem was the RLC boundary 

condition at the port.  This boundary condition is used to make HFSS assume there is a 
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waveguide of equivalent R, L, and C conditions connected to that face.  The RLC 

boundary was chosen to model our microwave microscope, with R = 28.07 kΩ, L = 0.01 

μH, and C = 0.49 pF.  This gives a resonant frequency 
LC
1

0 =ω = 14.29 GHz.  Yet, it 

seems that RLC boundaries should not be specified on port boundaries. 

HFSS found a resonant frequency of about 830 GHz, which is HUGE!  This could 

not be possible.  I did, however take a look at the fields that HFSS produced in the 

solution.  Below is a picture of the surface current on the perfect conducting plane. 

 

Figure 21.  This is a plot of the Surface Current on the perfectly conducting surface.  The peak 
appears to the left of the tip.  The rest of the plot looks a bit chaotic. 
The plot does not look very good at all.  The peak of the current is not directly 

underneath the tip and it appears to have other “lesser” peaks in random areas on the 

surface.   I still do not trust any data from this calculation.  Everything appears to be 

somewhat chaotic and the solution did not converge well at all.  Below is the plot of the 

convergence of the solution.  It is not smooth whatsoever. 
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Figure 22.  This is a plot of the convergence of the solution.  In no way can one assume that the 
solution is converging at all! 
  This usually means that there is some design or boundary flaw in the model.  This, in 

turn, means that there is something wrong with the solution.  

 This problem and a few others like it are what I call HFSS failures.  When a 

model does not have smooth convergence to a solution, usually that means there is 

something wrong with the specifications of the model.  Therefore, all field data is useless 

in that respect.  I will stress again: 

DO NOT TRUST ANTHING THAT HFSS PRODUCES UNTIL FULL 

CONFIDENCE AND PROOF ARE GIVEN THAT IT IS CORRECT!!! 
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